Developmental Biology

Anke van Eekelen, PhD
Telethon Institute for Child Health Research
Development

Differential cell behaviours
\(\text{division, differentiation, growth, patterning, movement}\)

\[\downarrow\]

the emergence of organised structures
\(\text{tissues, organs}\)
Basic Principles of Development

1- Cell Division

Cleavage

2- Pattern Formation

- Defining the Axes: Body Plan
- initiating Germ Layer Formation

Gastrulation

3- Morphogenesis

- Formation of 3 Germ layers
- Neural Crest Cell Migration

Organogenesis

4- Cell Differentiation

- Blood, Muscle, Nerves ...

5- Growth
Organisms used in Developmental Biology

<table>
<thead>
<tr>
<th>Org.</th>
<th>Latin name</th>
<th>genomic size</th>
<th>contribution to DB</th>
<th>Nobel Prize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast</td>
<td>S. cerevisiae</td>
<td>12 Mb</td>
<td>cell cycle, molecular bar codes</td>
<td>2001</td>
</tr>
<tr>
<td>Worm</td>
<td>C. elegans</td>
<td>97 Mb</td>
<td>cell fate/death, Gene silencing (RNAi)</td>
<td>2002</td>
</tr>
<tr>
<td>Plant</td>
<td>Arabidopsis</td>
<td>125 Mb</td>
<td>mutations/transformations, DNA microarrays</td>
<td></td>
</tr>
<tr>
<td>Fly</td>
<td>Drosophila</td>
<td>180 Mb</td>
<td>knockouts, P-transposable elements</td>
<td>1995</td>
</tr>
<tr>
<td>Fish</td>
<td>Danio rerio</td>
<td>1700 Mb</td>
<td>GFP genetic manipulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(zebrafish)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frog</td>
<td>Xenopus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td>Mus musculus</td>
<td>2600 Mb</td>
<td>(conditional) Knockout/ins, embryonic stem cell lines</td>
<td></td>
</tr>
</tbody>
</table>
Development is controlled by differential gene expression, which drives cascades of gene-regulatory events, which define differential cell behaviours, which underlie major developmental processes to study gene expression & protein function enhances understanding of development significantly!!!
Origin of differential gene expression patterns often can be traced back to the asymmetric localization of morpho-genetic information in the egg.
<table>
<thead>
<tr>
<th>Org.</th>
<th>Latin name</th>
<th>genomic size</th>
<th>contribution to DB</th>
<th>Nobel Prize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast</td>
<td>S. cerevisiae</td>
<td>12 Mb</td>
<td>cell cycle, molecular bar codes</td>
<td>2001</td>
</tr>
<tr>
<td>Worm</td>
<td>C. elegans</td>
<td>97 Mb</td>
<td>cell fate/death, Gene silencing (RNAi)</td>
<td>2002</td>
</tr>
<tr>
<td>Plant</td>
<td>Arabidopsis</td>
<td>125 Mb</td>
<td>mutations/transformations, DNA microarrays</td>
<td></td>
</tr>
<tr>
<td>Fly</td>
<td>Drosophila</td>
<td>180 Mb</td>
<td>knockouts, P-transposable elements</td>
<td>1995</td>
</tr>
<tr>
<td>Fish</td>
<td>Danio rerio (zebrafish)</td>
<td>1700 Mb</td>
<td>GFP genetic manipulation</td>
<td></td>
</tr>
<tr>
<td>Frog</td>
<td>Xenopus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>Mus musculus</td>
<td>2600 Mb</td>
<td>(conditional) Knockout/ins embryonic stem cell lines</td>
<td></td>
</tr>
</tbody>
</table>
Cleavage
Cell division and body axes formation
Drosophila (Fruit Fly)

Localisation of morphogenetic information
\[\downarrow \]
Cytoplasmic factors
(specific mRNAs and proteins)
\[\downarrow \]
maternal vs zygotic genes
\[\downarrow \]
A–P & V–D axis
\[\downarrow \]
segmentation
Legs and wings form at parasegmental borders.
Similarity between invertebrates and (higher)vertebrates:
- many common genes
- maternal determinants in oocyte
- overlap in cascades of gene-regulatory events driving development
Gastrulation
Morphogenesis and formation of 3 germ layers
Frog/Chicken

GASTRULATION is the re-arrangement of the blastula to form:

- **Outer ectoderm**: skin and (central) nervous system
- **Inner mesoderm**: most of the organs
- **Endoderm**: linings of digestive and respiratory system
During gastrulation and cell differentiation:

<table>
<thead>
<tr>
<th>Genes encoding transcription factors</th>
<th>Brachyury</th>
<th>Brachyury</th>
</tr>
</thead>
<tbody>
<tr>
<td>goosecoid</td>
<td>goosecoid</td>
<td></td>
</tr>
<tr>
<td>Pintallavis</td>
<td>Hnf-3β</td>
<td></td>
</tr>
<tr>
<td>Xlim-1</td>
<td>Lim-1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genes encoding secreted proteins</th>
<th>Xnr-3</th>
<th>Nodal</th>
</tr>
</thead>
<tbody>
<tr>
<td>chordin, Xnot2, noggin, Shh</td>
<td>Shh</td>
<td></td>
</tr>
<tr>
<td>Cerberus</td>
<td>Cerberus-related</td>
<td></td>
</tr>
</tbody>
</table>

‘Autonomous’ signals or cell conditioning signals
Organizers or signalling centres underline importance of genes regulating crucial developmental events

A-Gastrulation: Spemann organizer

Hensen’s node
B- Cell differentiation

Limb formation: **Apical Ectodermal Ridge**

Brain compartmentalization: **Isthmus**
(defines boundary between mid- and hindbrain)
Mouse/zebrafish

Models for genetic manipulation of vertebrate species!
→ Loss/(gain) of function studies

e.g.
stable manipulations
knockin reporter mice
Gene knockout mice
Conditional gene knockout mice

temporary manipulations
RNA-interference
mRNA blockade with morpholinos
Why are there five fingers on our hands?